15 Similitudes directes

Définition 1. Une transformation du plan complexe \mathcal{P} est une application

$$f: \mathscr{P} \longrightarrow \mathscr{P}$$
 $M \longmapsto M'$ qui est bijective.

A toute transformation f du plan complexe, on peut associer une unique application

$$\varphi: \quad \mathbb{C} \quad \longrightarrow \quad \mathbb{C}$$

$$z \quad \longmapsto \quad z'$$

telle que si M'(z') = f(M(z)), alors $\varphi(z) = z'$.

 φ , qui est également bijective, est appelée transformation complexe associée à f . La formule $z' = \varphi(z)$ est appelée écriture ou expression complexe de la transformation f.

Exemple 2. — La translation, l'homothétie et la rotation sont des transformations du plan.

— La composée de deux transformations du plan est une transformation du plan.

Voici les écritures complexes de ces transformations du plan.

Écriture complexe d'une translation

Théorème 3. La translation de vecteur \vec{u} , d'affixe a, transforme un point M(z) en un point M'(z') tel que : z' = z + a.

Démonstration

Dire que M' est l'image de M par la translation de vecteur \vec{u} revient à dire que $\overrightarrow{MM'} = \vec{a}$, ce qui se traduit en termes d'affixes par z' - z = a soit z' = z + a.

Remarque 4. — La translation réciproque a pour vecteur $-\vec{u}$.

— Ajouter un nombre a revient géométriquement à translater d'un vecteur d'affixe a.

2 15 : Similitudes directes

Écriture complexe d'une homothétie

Théorème 5. L'homothétie de centre $\Omega(\omega)$ et de rapport $k \in \mathbb{R}$ transforme un point M(z) en un point M'(z') tel que : $z' - \omega = k(z - \omega)$.

Démonstration

Dire que M' est l'image de M par l'homothétie de centre Ω et de rapport k, signifie par définition que : $\overrightarrow{\Omega M'} = k \overrightarrow{\Omega M}$, ce qui se traduit en termes d'affixes par : $z' - \omega = k(z - \omega)$ ou $z' = kz + \omega(1 - k)$.

Exemple 6. Soit f la transformation du plan qui, à tout point M(z) du plan associe le point M'(z') tel que : $z' = -\frac{5}{2}z + 2i$.

Montrons d'abord que f admet un unique point invariant.

Pour cela, résolvons l'équation $f(\omega) = \omega$.

$$f(\omega) = \omega \iff -\frac{5}{2}\omega + 2i = \omega \iff \omega = \frac{4}{7}i.$$

La transformation f admet donc un unique point invariant Ω d'affixe $\omega = \frac{4}{7}i$. Pour déterminer la nature de f, exprimons $z' - \omega$ en fonction de $z - \omega$. On a :

$$\begin{cases} z' = -\frac{5}{2}z + 2i \\ \omega = -\frac{5}{2}\omega + 2i \end{cases}$$

D'où en soustrayant membre à membre : $z' - \omega = -\frac{5}{2}(z - \omega)$..

On en déduit, grâce à son écriture complexe, que f est l'homothétie de centre Ω et de rapport $k=-\frac{5}{2}$.

Remarque 7. — Comme cas particulier d'une homothétie, on a la symétrie centrale, qui est une homothétie de rapport -1.

L'écriture complexe de la symétrie s de centre Ω d'affixe ω est s $(z) = z' = -z + 2\omega$.

— Lorsque O (origine du repère) est le centre de l'homothétie alors z'=kz.

Écriture complexe d'une rotation

Théorème 8. La rotation de centre $\Omega(\omega)$ et d'angle $\theta \in \mathbb{R}$ transforme un point M(z) en un point M'(z') tel que : $z' - \omega = e^{i\theta}(z - \omega)$ ou $z' = e^{i\theta}z + \omega(1 - e^{i\theta})$.

Démonstration

Si $M = \Omega$, la relation $z' - \omega = e^{i\theta}(z - \omega)$ est triviale.

Si $M \neq \Omega$, dire que M' est l'image de M par la rotation de centre Ω et d'angle θ signifie que :

$$\begin{cases} \Omega M' = \Omega M \\ \left(\overrightarrow{\Omega M}; \overrightarrow{\Omega M'} \right) = \theta \quad [2\pi] \end{cases}$$

Ce qui se traduit en termes d'affixes par :

$$\begin{cases} |z' - \omega| = |z - \omega| \\ \arg\left(\frac{z' - \omega}{z - \omega}\right) = \theta \quad [2\pi] \end{cases}$$

On en déduit que : $\frac{z'-\omega}{z-\omega}=\mathrm{e}^{\mathrm{i}\theta}$ d'où $z'-\omega=\mathrm{e}^{\mathrm{i}\theta}(z-\omega)$.

Cas particulier

Si Ω =0, l'écriture complexe de la rotation devient : $z'=\mathrm{e}^{\mathrm{i}\theta}z$.

Exemple 9. On donne deux points distincts A(a) et B(b). On construit le carré ABCD de sens direct. Quelle est l'affixe ω du centre Ω du carré ABCD?

Il suffit de remarquer que B est l'image de A par la rotation de centre Ω et d'angle $\frac{\pi}{2}$.

$$b - \omega = e^{i\frac{\pi}{2}}(a - \omega) = i(a - \omega) \iff \omega(1 - i) = ai - b \iff \omega = \frac{ai - b}{1 - i}.$$

Exercice 10. 1. Le plan complexe est muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

Soit A, B et C les points d'affixes respectives $z_A = 4$, $z_B = 1 + 3i$ et $z_C = 1 - i$.

- (a) Déterminer l'écriture complexe de la translation de vecteur \overrightarrow{AB} puis trouver l'image C' du point C.
- (b) Déterminer l'écriture complexe de la rotation de centre O et d'angle $\frac{\pi}{3}$ puis trouver l'image A' de A.
- (c) Déterminer le rapport de l'homothétie de centre $\Omega(1)$ qui transforme B en C.
- (d) Déterminer le centre de la rotation d'angle $\frac{\pi}{4}$ qui transforme B en C.
- 2. Déterminer la nature et les éléments caractéristiques des transformations suivantes :

a)
$$T_1: z' = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z + 2i(1 - e^{i\frac{2\pi}{3}})$$
 b) $T_2: z' = -\sqrt{3}z + (4+i)(1+\sqrt{3})$

4 15 : Similitudes directes

I - Similitudes directes

Définition 11 (Rappel). On appelle similitude plane directe, toute transformation du plan \mathscr{P} dans lui-même qui multiplie les distances par un nombre réel k > 0, appelé rapport et qui conserve les mesures d'angles.

Les éléments caractéristiques d'une similitude directe sont :

le rapport,

le centre,

l'angle.

Exemple 12. — Une translation de vecteur non nul est une similitude directe de rapport k = 1 et d'angle $\theta = 0$.

- Une homothétie de centre Ω et de rapport k est une similitude directe de centre Ω , de rapport |k| et d'angle $\theta = 0$ si k > 0 ou $\theta = \pi$ si k < 0.
- Une rotation de centre Ω et d'angle θ est une similitude directe de rapport k=1, de centre Ω et d'angle θ .

Toute similitude directe S de centre Ω , de rapport k et d'angle θ est notée par $S(\Omega, k, \theta)$. Ω , k et θ sont les éléments caractéristiques de la similitude directe.

Propriétés géométriques d'une similitude directe

Soit S la similitude directe de centre Ω , de rapport k et d'angle θ qui transforme le point M(z) en M'(z').

$$S(M) = M' \Longleftrightarrow \begin{cases} \Omega M' = k \Omega M \\ \left(\overrightarrow{\Omega M}, \overrightarrow{\Omega M'} \right) = \theta \quad [2\pi] \end{cases}$$

Remarque 13. — Le centre de la similitude est le seul *point invariant*.

— Une similitude directe qui n'admet pas de point invariant est une translation.

Propriété 14. — Une similitude directe multiplie :

- les distances par k,
- les aires par k^2 .
- Une similitude directe conserve:
 - l'alignement des points,
 - le parallélisme,
 - l'orthogonalité,
 - le contact.
 - le barycentre
 - les angles orientés.

5 15 : Similitudes directes

— Par une similitude directe S l'image d'une droite Δ passant les points A et B est une droite Δ' passant par les images A' et B' de A et B par S.

- Par une similitude directe S l'image d'un cercle \mathscr{C} de centre I et de rayon r est un cercle \mathscr{C}' de centre I' image de I par S et de rayon kr.
- La réciproque d'une similitude directe $S(\Omega, k, \theta)$ est une similitude directe S^{-1} $\left(\Omega, \frac{1}{k}, -\theta\right)$.
- La composée de deux similitudes directes de même centre, est une similitude directe de même centre, de rapport le produit des rapports et d'angle, la somme des angles.

$$S(\Omega, k, \theta) \circ S'(\Omega', k', \theta') = S(\Omega, k + k', \theta + \theta')$$

Remarque 15. Soit la similitude directe $S(\Omega, k, \theta)$. Alors :

$$\underbrace{S \circ S \circ S \circ \cdots S \circ S \circ S}_{n \text{ fois}} = S(\Omega, k^n, n\theta)$$

Expression complexe d'une similitude directe

Activité d'introduction 16. Le plan complexe \mathcal{P} est muni du repère orthonormé (O; I, J).

On considère l'application f du plan complexe \mathcal{P} dans lui-même qui à tout point M d'affixe z associe le point M' d'affixe z' = (1+i)z + 2 - 3i.

- 1. Déterminer l'image A' du point A d'affixe 2 + i.
- 2. Quelle est l'affixe de l'image du point O? du point I? du point J?
- 3. Déterminer l'affixe de l'antécédent du point B'(-2i).
- 4. Quelle est l'affixe de l'antécédent du point O?
- 5. Déterminer le point Ω dont l'affixe ω vérifie $f(\omega) = \omega$.
- 6. Exprimer z en fonction de z' sous la forme z = az' + b où a et b sont des nombres complexes écrits sous forme algébrique.

Activité d'introduction 17. On considère l'application f du plan complexe \mathcal{P} dans luimême qui à tout point M d'affixe z associe son image M' d'affixe z' telle que z' = az + b où a et b sont des nombres complexes non nuls.

On donne les points A(1), B(i), A'(1+2i) et B'(-1+6i)

- 1. Déterminer a et b sachant que f(A) = A' et f(B) = B'.
- 2. Déterminer ω tel que $f(\omega) = \omega$.
- 3. Exprimer $z' \omega$ en fonction de $z \omega$.
- 4. En posant z' = x' + iy' et z = x + iy exprimer x' et y' en fonction de x et y.

6 15: Similitudes directes

Théorème 18 (Écriture complexe). La similitude directe S de centre Ω d'affixe ω , de rapport k et d'angle θ transforme un point M(z) en un point M'(z') tel que : $z' - \omega = k e^{i\theta} (z - \omega)$ ou $z' = ke^{i\theta}z + \omega(1 - ke^{i\theta}).$

Démonstration

$$S(M) = M' \iff \begin{cases} \Omega M' = k \Omega M \\ \left(\overline{\Omega M}, \overline{\Omega M'}\right) = \theta \end{cases} [2\pi] \iff \begin{cases} \frac{\Omega M'}{\Omega M} = k \\ \left(\overline{\Omega M}, \overline{\Omega M'}\right) = \theta \end{cases} [2\pi] \iff \begin{cases} \left|\frac{z' - \omega}{z - \omega}\right| = k \\ \arg\left(\frac{z' - \omega}{z - \omega}\right) = \theta \end{cases} [2\pi] \end{cases}$$

$$\iff \frac{z' - \omega}{z - \omega} = ke^{i\theta} \iff z' - \omega = ke^{i\theta}(z - \omega) \text{ ou } z' = ke^{i\theta}z + \omega(1 - ke^{i\theta}).$$

Conséquence 19. Toute similitude directe a une écriture complexe de la forme : z' = az + boù $a \in \mathbb{C}^*$, $b \in \mathbb{C}$ et z' l'affixe de l'image du point d'affixe z.

Réciproque

Toute transformation f admettant une écriture de la forme : z' = az + b avec $a \ne 0$ est une similitude directe de rapport k = |a| et d'angle $\theta = \arg a$.

Démonstration

Soient M et N points quelconques du plan d'images respectives M' et N' par f.

$$\begin{cases} z_{N'} &= az_N + b \\ z_{M'} &= az_M + b \end{cases} \text{ alors } z_{N'} - z_{M'} = a(z_N - z_M) \text{ d'où } |z_{N'} - z_{M'}| = |a| |z_N - z_M|.$$

D'où
$$M'N' = |a| \times MN$$

Et $a \neq 0$, donc f est une similitude de rapport |a|.

De plus, comme $a \neq 0$, son argument existe et arg $(z'_N - z'_M) = \arg a + \arg (z_N - z_M)$

Donc:
$$(\vec{u}, \overrightarrow{M'N'}) = \arg a + (\vec{u}, \overrightarrow{MN}).$$

D'où :
$$(\overrightarrow{MN}, \overrightarrow{M'N'}) = \arg a$$

f est une similitude et l'angle entre un vecteur et son image est constant donc :

f est donc une similitude directe et son angle vaut cette constante : arg a.

Théorème 20. Soient A, B, A' et B' quatre points donnés du plan tels que $A \neq B$ et $A' \neq B'$. Alors, il existe une unique similitude directe s telle que : s(A) = A' et s(B) = B'.

Démonstration

Si une telle similitude s existe alors il existe deux nombres complexes a et b, avec $a \ne 0$ tels que :

$$z_{A'} = az_A + b$$
 et $z_{B'} = az_B + b$
alors: $z_{B'} - z_{A'} = a(z_B - z_A)$ soit $a = \frac{z_{B'} - z_{A'}}{z_B - z_A}$ et on a: $b = z_{A'} - az_A$
Si s'avista la coupla (a, b) est unique et s'est donc elle aussi unique

Si s existe, le couple (a,b) est unique et s est donc elle aussi unique. Soit s la similitude directe dont l'écriture complexe est z'=az+b où $a=\frac{z_{B'}-z_{A'}}{z_{P}-z_{A}}$ et $b=z_{A'}-az_{A}$.

B étant différent de A, donc a est défini.

$$z_{A'} = az_A + b$$
 et $z_{B'} - z_{A'} = az_B - az_A$

Donc
$$z_{B'} = az_B - az_A + z_{A'} = az_B + b$$

De plus, comme $B \neq A$, donc a est non nul et s est donc définie.

D'où :
$$s(A) = A' \text{ et } s(B) = B'$$
.

Une similitude directe transformant A en A' et B en B' existe donc et est unique.

Expression analytique d'une similitude directe

À partir de l'écriture complexe d'une similitude s directe, on peut en déduire l'écriture analytique. Pour cela on remplace z par x + iy et z' par x' + iy' dans z' = az + b. Puis on exprime x' et y' en fonction de x et y.

Exemple 21. Soit s :
$$z' = (1-i)z + 1 + 5i$$

 $x' + iy' = (1-i)(x+iy) + 1 + 5i \iff x' + iy' = x + y + 1 + i(-x + y + 5) \Leftrightarrow \begin{cases} x' = x + y + 1 \\ y' = -x + y + 5 \end{cases}$

Utilisation des nombres complexes pour déterminer la nature d'une transformation géométrique

Théorème 22. Soit une similitude directe s d'écriture complexe : z' = az + b avec $a \neq 0$.

- si a = 1: s est la translation de vecteur d'affixe b.
- si $a \ne 1$: alors s admet un unique point invariant d'affixe : $\omega = \frac{b}{1-a}$ et s est la composée :
 - de l'homothétie de centre $\Omega(\omega)$ et de rapport |a| (rapport de s) et
 - de la rotation de centre $\Omega(\omega)$ et d'angle : arga (angle de s)

 Ω est appelé le centre de la similitude directe s.

Et une écriture complexe de s est alors $z' - \omega = |a|e^{iarga}(z - \omega)$.

- si |a| = 1 et $a \ne 1$ alors s est une rotation de centre d'affixe $\omega = \frac{b}{1-a}$ et d'angle arga.
- si $a \in \mathbb{R} \setminus \{0, 1\}$ alors s une homothétie de centre d'affixe $\omega = \frac{b}{1-a}$ et de rapport a.

Récapitulatif des écritures complexes

Transformation	Écriture complexe
Translation de vecteur $ec{u}$	$z' = z + b$ ($b = affixe de \vec{u}$)
Homothétie de centre Ω , rapport k	$z' - \omega = k(z - \omega)$ (ω = affixe de Ω)
Rotation de centre Ω , angle θ	$z' - \omega = e^{i\theta}(z - \omega)$ (ω = affixe de Ω)
Similitude directe de centre Ω , $k > 0$, $\theta \in \mathbb{R}$	$z' - \omega = k e^{i\theta} (z - \omega)$ (ω = affixe de Ω)

1. Identifier la transformation définie par l'écriture complexe donnée et préciser ses éléments caractéristiques

a)
$$z' = z - i\sqrt{3}$$

b)
$$z' = \frac{\sqrt{2}}{2}(1-i)z-i$$

c)
$$z' = 4z - 2i$$

d)
$$z' = -iz + 1 + i$$

2. Donner l'écriture complexe des similitudes directes ci-dessous de centre Ω d'affixe ω , de rapport k et d'angle θ .

a)
$$\omega = 2 + i$$
, $k = 2$, $\theta = \frac{\pi}{2}$

a)
$$\omega = 2 + i$$
, $k = 2$, $\theta = \frac{\pi}{2}$
b) $\omega = -i$, $k = \frac{1}{2}$, $\theta = \frac{\pi}{2}$

c)
$$\omega = 1 + 2i$$
, $k = 3$, $\theta = \frac{\pi}{2}$

d)
$$\omega = 0$$
, $k = \sqrt{3}$, $\theta = \frac{3\pi}{4}$
d) $\omega = 1 + i$, $k = 2$, $\theta = \pi$

d)
$$\omega = 1 + i$$
, $k = 2$, $\theta = \pi$

e)
$$\omega = -1$$
, $k = 7$, $\theta = 0$