Similitudes directes

Similitudes directes

1. Transformations du plan complexe

Une transformation du plan complexe \mathcal{P} est une application bijective :

$$f: \mathscr{P} \longrightarrow \mathscr{P}, \quad M \longmapsto M'$$

On lui associe une unique application complexe bijective $\varphi : \mathbb{C} \to \mathbb{C}$, telle que $z' = \varphi(z)$. L'expression $z' = \varphi(z)$ est appelée **écriture complexe** de la transformation.

2. Écriture complexe des transformations usuelles

— Translation de vecteur \vec{u} d'affixe a:

$$z' = z + a$$

— Homothétie de centre $\Omega(\omega)$ et de rapport $k \in \mathbb{R}$:

$$z' - \omega = k(z - \omega)$$
 ou $z' = kz + \omega(1 - k)$

— Rotation de centre $\Omega(\omega)$ et d'angle θ :

$$z' - \omega = e^{i\theta}(z - \omega)$$
 ou $z' = e^{i\theta}z + \omega(1 - e^{i\theta})$

3. Similitudes directes

Définition 1. Une **similitude directe** est une transformation du plan qui conserve les angles orientés et multiplie les distances par un réel k > 0, appelé **rapport**.

Les éléments caractéristiques d'une similitude directe sont :

- le **centre** Ω (point invariant),
- le **rapport** k > 0,
- l'angle θ .

Elle est notée : $S(\Omega, k, \theta)$

2 Similitudes directes

4. Propriétés géométriques d'une similitude directe

- Le centre est le seul point invariant (sauf pour les translations).
- Une similitude directe :
 - multiplie les longueurs par k;
 - multiplie les aires par k^2 ;
 - conserve les alignements, parallélismes, orthogonalités, barycentres, contacts et angles orientés.
- L'image d'une droite est une droite; l'image d'un cercle est un cercle.
- La réciproque de $S(\Omega, k, \theta)$ est $S^{-1}(\Omega, \frac{1}{k}, -\theta)$.
- La composée de deux similitudes directes de même centre est une similitude directe de même centre :

$$S(\Omega, k, \theta) \circ S(\Omega, k', \theta') = S(\Omega, kk', \theta + \theta')$$

5. Écriture complexe d'une similitude directe

Toute similitude directe de centre Ω d'affixe ω , de rapport k>0 et d'angle θ admet l'écriture complexe :

$$z' - \omega = ke^{i\theta}(z - \omega)$$
 ou $z' = ke^{i\theta}z + \omega(1 - ke^{i\theta})$

Conséquence 2. Toute similitude directe a une écriture complexe de la forme :

$$z' = az + b$$
 où $a \in \mathbb{C}^*$, $b \in \mathbb{C}$

avec k = |a| et $\theta = \arg(a)$.

6. Détermination de la nature d'une transformation

Soit f(z) = az + b avec $a \neq 0$:

- si a = 1: f est une **translation** d'affixe b;
- si |a| = 1 et $a \ne 1$: f est une **rotation**;
- si $a \in \mathbb{R} \setminus \{0, 1\}$: f est une **homothétie**;
- si $a \notin \mathbb{R}$ et $|a| \neq 1$: f est une **similitude directe** non isométrique.

Le point invariant ω est donné par :

$$\omega = \frac{b}{1 - a}$$

3 Similitudes directes

7. Tableau récapitulatif

Transformation	Écriture complexe
Translation de vecteur \vec{u}	$z' = z + b$ ($b = affixe de \vec{u}$)
Homothétie de centre Ω , rapport k	$z' - \omega = k(z - \omega)$
Rotation de centre Ω , angle θ	$z' - \omega = e^{i\theta}(z - \omega)$
Similitude directe de centre Ω , $k > 0$, $\theta \in \mathbb{R}$	$z' - \omega = k e^{i\theta} (z - \omega)$