Primitives (TS2)

Primitives (TS2)

algebra

Exercice 1 (Type 1 – Reconnaissance et calcul direct de primitives). Déterminer une primitive de chacune des fonctions suivantes :

Exercice 2 (Type 2 – Application de méthodes). Déterminer une primitive de chacune des fonctions suivantes, en posant une substitution adaptée si nécessaire :

Exercice 3 (Calcul de primitives). Soit la fonction définie sur par : .

  1. Justifier que admet des primitives sur .

  2. Déterminer les réels et tels que : .

  3. En déduire la primitive de sur qui s’annule en 0.

Exercice 4 (Calcul de primitives). Soit la fonction définie sur par :
.

  1. Déterminer les réels , , et tels que : .

  2. En déduire une primitive de sur .

Exercice 5 (Type 3 – Justification, lien entre dérivée et primitive). Soit la fonction définie sur par .

  1. Justifier que admet une primitive sur .

  2. On considère la fonction . Montrer que est une primitive de sur .

  3. Déterminer une primitive de sur .

Exercice 6 (Type 3 – Primitives avec exponentielle). Soit la fonction définie sur par .

  1. Montrer que est continue sur .

  2. Justifier que admet une primitive sur .

  3. En posant , montrer que est une primitive de .

  4. Déterminer la primitive de dont la courbe passe par le point .

Exercice 7 (Situation complexe). Une entreprise modélise la température (en °C) d’un four en fonction du temps (en minutes) par la dérivée , valable pour .
On sait qu’à l’instant , la température est de C.
À quel instant la température est-elle minimale ? Quelle est cette température ?